(1t at Scale for Everyone

D. Stolee, Git Client Team, Microsoft
Twitter: @stolee GitHub: @derrickstolee
https://stolee.dev/docs/voss-2020.pdf

Spectrum of Scale

1,000,000

Commits

Spectrum of Scale

10,000,000

Total Object Count

Spectrum of Scale

J

100,000

Files in Working Directory

Spectrum of Scale

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention User switches context User will avoid

Repository growth

I

Git command time

Success Story: Microsoft Windows

Improving Git Performance (Iteratively)

: : Gather

Ship

Feedback
Contribute Measure
upstream Performance
& Build a w

Solution

We make Git better for everyone

Supercharging the Git Commit Graph

Exploring new frontiers for Git push

2 s performance
A \\}_‘ .
; ‘ ']
b Y
) E
T ok * = 3 .
B B M) oa2/3s0 : A Deep Dive into Git Performance

using Trace2

Making Git for Windows - Git Merge 2018

4

Updates to the Git Commit Graph
Feature

about t

20 § 4 SHARE =3 SAVE

Next Milestone: Microsoft Oftice

Similar size and shape to Windows OS repo
Hosted on Azure Repos

Client must work on Windows & macOS

" Developer Discover Design Develop Distribute Support Account

Support

Deprecated Kernel Extensions and
System Extension Alternatives

System extensions on macOS Catalina (10.15) allow software like network extensions and
endpoint security solutions to extend the functionality of macOS without requiring kernel-
level access. At WWDC19, we announced the deprecation of kernel extensions as part of
our ongoing effort to modernize the platform, improve security and reliability, and enable
more user-friendly distribution methods. Kernel programming interfaces (KPIs) will be
deprecated as alternatives become available, and future OS releases will no longer load
kernel extensions that use deprecated KPlIs by default.

Transitioning Your Kernel Extensions

https://github.com/microsoft/scalar
MIT License
Built 1in the open. Contributions welcome!

Lessons for Git at Scale

Lesson 1: Focus on the files that matter

Lesson 2: Reduce object transfer

Lesson 3: Don’t wait for expensive operations

Lesson 1: Focus on the files that matter

Index
Every path tracked by Git

(Millions)
Populated

Every file from the index that
Git writes to the working directory

(Hundreds of thousands) / Untracked files

Tracked files ’ Modified

Every file on-disk whose contents
differ from the indexed version
(Hundreds)

Reduce Populated Size: Sparse-checkout

Android Client Dev

/ (root)

bootstrap.sh

| client
[android
L electron
05

Demo: git sparse-checkout

LICENSE.md
README.md

i

- E
+
+ I
- N

https://github.blog/2020-01-17-bring-your-monorepo-down-to-size-with-sparse-checkout/

Sparse-checkout
(default mode)

Patterns are verified in order
against every path in the index.

Positive patterns include files

Negative patterns exclude files

On a typical sparse-checkout pattern
for the Microsoft Office repo, this
calculation takes

40 minutes

Index Entries (N)
bootstrap.sh
client/
client/android/

client/electron/
client/iOS/
client/README
LICENSE.md
README.md
service/
service/common/
service/identity/
servicellist/
servicel/items/
service/README
web/
web/browser/
web/editor/
web/friends/
web/README

Sparse-checkout Patterns (M)

!/client/*/ | /client/android/

M E
(1 3
B8 E

= o e e e e e [
Z|z|z|z|z|z|z|2|z]|z |z |z]|Z]|=|=]=]=]=]Z

B e e AR A B B AR = = =

e e e =) A

Sparse-checkout
(cone mode)

Create two hashsets:
Parent patterns
Recursive patterns
Match based on exact strings

(remove filename if not directory)

On all known sparse-checkout
patterns for the Microsoft Office
repo, this calculation takes

1-2 seconds

Index Entries (N)

Parent Pattern Set

bootstrap.sh

client/
client/android/
client/electron/
client/iOS/
client/README
LICENSE.md
README.md
service/
service/common/
service/identity/

service/list/
service/items/
service/README
web/

web/browser/
web/editor/
web/friends/
web/README

= =
= L=]
o |O
o |O
= =

|

[client |

Recursive Pattern Set
client/android

Skip matching
these entries

H

Skip matching
these entries

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention ~ User switches context User will avoid

I 1 OS .
! 40 minutes!

Time to update sparse-checkout definition

Finding Modified Files
with Filesystem Monitor

Commands like git status or git add
need to know which files were modified since
the last checkout.

This usually results in scanning directories. /U \
]
=2 4

Finding Modified Files
with Filesystem Monitor

Commands like git status or git add
need to know which files were modified since
the last checkout.

This usually results in scanning directories.

With the fsmonitor hook, Git can get a list from a
specialize filesystem watcher, such as

What’s new?

<
<

\4

Not much

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention User switches context User will avoid

I 10s

git status command time

How can Git better focus on files that matter?

Sparse-Checkout Filesystem Monitor
Continued UX improvements .+ Make the hook more robust, faster
git sparse-checkout add <dir> . We are preparing a Git-aware filesystem
git sparse-checkout remove <dir> monitor.

git sparse-checkout stats

Update with non-empty git status

Lesson 2: Reduce Object Transfer

Jef HIESE
$ git clone --single-branch https://dev.azure.com/mseng/_git/AzureDevOps
Cloning into 'AzureDevOps'...
remote: Azure Repos
remote: Found 6938156 objects to send. (1090 ms)
Receiving objects: 0% (18433/6938156), 3.13 mMiB | 1.17 MiB/s

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention User switches context User will avoid

git clone time

Spectrum of Perceived Performance

<Ilm Im-10m 10m-1h 1h-10h >10h
Feels fast Feels slow Over lunch break Overnight User will avoid

git clone time

GVFS Protocol |—| Partial Clone

GVEFS protocol (Created 2015-16) Git Partial Clone (Created 2018)
& Uses these REST API endpoints: ¢ git clone --filter=blob:none <url>
¢ GET <url>/gvfs/config & Fetches only commits and trees
& GET <url>/gvfs/objects/{objectid} ® Blobs are fetched in a batch request during
® POST <url>/gvfs/objects git checkout and similar requests
® GET <url>/gvfs/prefetch
§ Now available on all GitHub.com repositories!
& POST <url>/gvfs/sizes

Reduced Object Transfer + Sparse-Checkout = Success!

https://git-scm.com/docs/partial-clone

Spectrum of Perceived Performance

<Ilm Im-10m 10m-1h 1h-10h >10h
Feels fast Feels slow Over lunch break Overnight User will avoid

)

Time for git clone vs partial clone or GVFS protocol

GVEFS Cache Servers and G1t Prormsor Remotes

Lesson 3: Don’t wait for expensive operations

THE #2 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

git gc --auto

"HEY! GETBACK.
_ TOWORK! i
> |

;
— REPACKING! .L?'

= ks /{“

UH CARRY ON.

https://xkcd.com/303/

Background Maintenance

The following can be done in the background, reducing user-blocking time:
Background fetch: get latest objects from remotes

Loose Objects: Clean up loose objects safely

Pack-files: Index and repack pack-files incrementally

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1m >1m
Immediate Interactive Keeps user’s attention ~ User switches context User will avoid

Foreground git fetch time

Too Many Packs?

2,000 — 4,000 packs
150 GB -250 GB

Too Many Packs?

Too Many Packs?

git multi-pack-index write

multi-pack-index:

.pack files: t
| =

Incremental Repack

git multi-pack-index repack

multi-pack-index:

.pack files:

Incremental Repack

git multi-pack-index expire

multi-pack-index:

.pack files:

Spectrum of Scale

30 — 60 packs 2,000 — 4,000 packs
30 GB-50 GB 150 GB - 250 GB

10 GB

Effect of background git multi-pack-index repack

Background Maintenance in Git?

® Should Gi1t do background maintenance?

® What of these background jobs make sense for most users?

& How might expert users want to customize these jobs? (Frequency, batch sizes, etc.)

https://github.com/microsoft/scalar

Installers available for Windows and macOS

Scalar Quick Start

$ git version

g1 VeRSTHORS2E D50 Ay {5 3

$ scalar version

scalar 20.01.165.4

$ scalar register

Successfully registered repo at ¢/Users/stolee/ git/vscode’

Demo: scalar register

Demo: scalar clone

Features coming to Git:

S Cal ar bl‘ i dgeS - Git-native filesystem monitor

Git-native cache servers

the gap for now

Background maintenance

https://github.com/microsoft/scalar

Installers available for Windows and macOS

