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Hello, my fellow Git nerds!

I’m so excited to be surrounded by like-minded folks such as you.

Today, my goal is to popularize an idea.

This idea should not be surprising or controversial to this audience, but I hope it gives 
you a framing device and a vocabulary as you leave this bubble of Git superfans and 
go back to your own organizations, spreading the good word.

Here is the main idea:



Git is the distributed 
database at the core of 
your engineering system.

Git is the distributed database at the core of your engineering system.

(pause)

Git is the distributed database at the core of your engineering system.
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When you think about it, Git is the center of your collaboration infrastructure.

Not only does Git allow multiple developers to do concurrent work on the same 
repository, but it also links with your build & test infrastructure, determines 
which versions you deploy to production or release to customers. 
Stakeholders in your organization may watch your repository to measure 
activity and progress.

All of these activities coordinate using Git as a communication medium.



Services

Support & 
SRE

Backup 
Procedures

Background 
Jobs

Reports

Application Infrastructure

Your Favorite DB

As a parallel, your application database is the core of your application 
infrastructure.

To persist application data, almost all applications use a third-party database 
application.

This database stores the information that is manipulated and served by 
application services. Background jobs process data async from user requests. 
Your infrastructure may have built custom backup procedures with failover 
remediation.

Let’s also keep in mind that the database health is monitored by support and 
SRE.



We learn so much about databases…

…we should learn about Git, too.

This leads to engineers learning a lot about how application databases work. There 
are thousands of books about how databases work and how you can write 
applications that take advantage of their strengths. No one bats an eye at the work 
required to understand your database and to interact with it properly.

Huge investments are made to build extra infrastructure around the database to make 
sure it remains healthy as your application grows.

(pause)

I’m here to say that everyone should learn about Git in the same way.



Previously on Git Merge…

500,000 files and counting
Git tooling for monorepos at Canva

Alex Sadleir

Improving git status performance
in Uber's Go monorepo

Zhongpeng Lin & Mindaugas Rukas

Build-Aware Sparse-Checkouts
Waleed Khan

We’ve already seen three talks today about companies investing heavily in their Git 
infrastructure to ensure that it works exactly for their needs. These talks from Uber, 
Twitter, and Canva show what advancements can be made with that kind of 
investment.

(pause)

But we don’t all have an engineering system so large that we can make that kind of 
investment. Many organizations need to rely on the Git client out-of-the-box as well as 
whatever Git hosting service they choose.

As a Git contributor, my main mission is to help every Git user achieve their highest 
collaboration potential. The Git community is constantly improving the Git client to 
meet these needs. Some times, these changes are immediate upon upgrading, but 
others require the user to opt-in to a new feature.

That’s where this aspect of learning about Git like a database comes in: the more you 
know about your tools, the better you can use them.



Git ConceptsDatabase Concepts

Storing (Table) Data Git’s Object Store

Queries  Git Commands

Query Indexes  Advanced Git Data Structures

Distributed Databases  Synchronizing Repositories

Sharding  Multi-Repo Organization

So here is my personal pairing of database concepts to Git concepts at the highest 
levels.

(click) At their core, databases store tables of data. Git stores objects in its object 
store.

(click) We manipulate and access database information using queries. Git’s query 
language is its command line interface.

(click) Databases use specialized query indexes to speed up certain queries. Git has 
advanced data structures specifically for speeding up certain kinds of Git commands.

(click) Distributed databases have custom ways of remaining consistent and dealing 
with concurrent changes across database nodes. Git repositories communicate 
through fetches and pushes to synchronize after-the-fact based on user demand.

(click) Finally, when databases need to scale beyond the limits of a single node, 
application developers can use one of many sharding strategies. Git has similar 
strategies using multi-repo organization.

This is what I mean by equipping you with a framework and vocabulary. You can use 
these parallels when describing advanced Git features to your fellow developers, and 
hopefully starting from the common understanding of application databases will help 
bridge the gap to the Git concepts.



Today, I’ll talk about my favorite parts of these concepts.



Git’s object store

Let’s start getting into some specifics, and we’ll start at the beginning, with Git’s object 
store.



Git Repository Data
As Tables

The main storage of Git repositories can be considered as two database tables:

The object store has two columns: an object ID and object data. For a given row, the 
object ID is the hash of the object contents column. This makes the object store a 
form of content-addressable storage. 

It’s not too helpful to need the contents of what you are looking for before you find it, 
so Git has another table providing starting pointers.

The reference store table has two columns: a reference name and an object ID. The 
reference name is the primary key. These human-chosen names are pointers into the 
opaque object store, allowing us to gain a foothold into the contents.

In this example, the “refs/tags/v2.37.0” reference points to an object in the object 
store.



Git Repository Data
As Tables

By pulling out the contents for that object, we see an annotated tag, which points to 
another Git object.

If we pull out that object and do a lookup in the object store, we see a commit object.



Git Repository Data
As Tables

The contents of that commit object also includes a commit message, but it also 
contains a “tree” pointer.

That tree object ID again refers to an object in the object store.



Git Repository Data
As Tables

We pull that content out of the object store and see a tree object, containing several 
tree entries describing the root directory of a worktree.

If we focus on the tree entry for README.md, we find another object ID.



Git Repository Data
As Tables

And finally, that object ID is associated with a blob object storing the contents of the 
README.md.

We’ve just taken several jumps through the object store just to find the README for 
Git 2.37.0.



Git Repository Data
As Graph

We can review this lookup in a more abstract way as walking edges of a graph.

First, the reference points to a tag object.



Git Repository Data
As Graph

The tag object has an object pointer, pointing to a commit in this case.



Git Repository Data
As Graph

Commits have pointers to their parents and to their root tree.



Git Repository Data
As Graph

Trees have entries pointing to other trees or blobs. We followed the entry for 
README.md to find the file contents for that file.

I’ll use this representation for the rest of the talk, specifically:

● Circles are commits.
● Triangles are trees.
● And Boxes are blobs.



Git Repository Data
As Graph

When seen in aggregate, the Git object graph can look like this.

I’ll keep the commit history grouped at the top, with a row of root trees below.

As we go deeper into subtrees, we find that some tree entries are shared, so despite 
storing snapshots of worktree at each commit, many of the trees and blobs at two 
commits are actually shared.

This Merkle Tree representation is the first way that Git keeps its object store small as 
users make changes.



Previously on Git Merge…

Learn How Git’s Code Works
Jacob Stopak

We heard a bit about Git’s object store earlier today in Jacob’s talk about how Git’s 
code works, especially when it first started.

Jacob talked about how Git stores objects in their loose format where each object is 
written to a file whose name is based on the object ID.



Git Repository Data
As Graph

When we look at the object graph and imagine it at full scale, we can imagine that 
loose objects will fill the filesystem too quickly.

One reason is the number of files themselves, but also loose objects cannot take 
advantage of a critical data shape in git repositories.



Git Repository Data
“Similar” objects

Here, I’ve grouped some objects that appear at the same path across multiple 
commits.

The top row of root trees all represent the base directory of the worktree.

These three blobs at the bottom might represent the same source code file.

One thing Git can expect is that these objects share significant portions in common, 
because as software developers we tend to modify a small portion of the repository at 
a time.

Git uses a particular kind of compression when objects have a lot of common data: 
delta compression.



Object Storage
Delta Compression

Here, I’m showing and example tree object as the base object as well as an example 
delta object.

Deltas are instructions to help construct an object based on copying regions from a 
base object and writing new regions at certain points.



Object Storage
Delta Compression

We start by copying the initial segment of the tree up until the object ID of the 
GIT-VERSION-GEN entry.



Object Storage
Delta Compression

Then, we write a new section of data corresponding to a different object ID.



Object Storage
Delta Compression

Finally, we copy the remaining data from the original tree, starting with the filename 
for the GIT-VERSION-GEN entry.



Object Storage
Delta Compression

At the end of this process, we have constructed the decompressed object, but used 
significantly less data to store the two objects than if we did not use dela 
compression.

This type of compression works quite well for trees, but also works well for most 
blobs, assuming the blobs store plain-text files such as source code and 
documentation.



Object Storage
Pack Files

As I mentioned, loose object files cannot take advantage of delta compression. We 
need to use a different file format.



Object Storage
Pack-Indexes

The pack-file file format basically takes a list of objects and concatenates their content 
(They are “packed” together). In this format, objects can be represented as deltas of 
previous objects.

If we want to do an object lookup to find the contents for an object ID, the pack-file 
itself is difficult to parse. It would be too slow to scan the pack until we find a matching 
object.



Object Storage
Pack-Indexes

Instead, Git creates a query index called a “pack-index”. This is a .idx file to pair with 
the .pack file.



Object Storage
Pack-Indexes

When doing a lookup, the first thing is to take the first byte of the object ID and look at 
that position of a 256-entry fanout table.



Object Storage
Pack-Indexes

The fanout table provides a range of values in the object list, which is sorted 
lexicographically.

A binary search within that range can find the object ID.



Object Storage
Pack-Indexes

That position in the object list is paired with a row in the offset table.



Object Storage
Pack-Indexes

Finally, the offsets point to a position within the packfile where the object data starts.

The object data’s initial segment includes a type and a length, allowing us to know 
how big the object is in the packfile.



Object Storage
Pack-Indexes

If the object is stored as a delta, then the content includes an offset to the base object 
that appeared earlier in the packfile.



Object Storage
Pack-Indexes

Finally, Git performs delta decompression to construct the object content that matches 
the requested object ID, completing the query.

This object content lookup loop happens thousands of times as your Git commands 
process object data and follow links in the Git object graph.



Sending objects between repositories
Pack Files

But this is not the only use of the packfile format. In fact, the format used to store 
compressed object data on disk is also used to share objects over the network 
between repositories.

Let’s explore how repositories synchronize efficiently.



Decentralized Git as Distributed Database

Consistent

Available Partition
tolerant

CAP Theorem

Remember that Git is a decentralized version control system, so every repository can 
act independently even as they coordinate together.

The closest parallels in application databases are distributed databases.

When thinking about distributed databases, the first thing we need to consider is the 
CAP theorem. A distributed system wants to be consistent, available, and partition 
tolerant. Unfortunately, these things are not possible simultaneously.

Distributed databases normally think about network partitions as an infrequent 
occurrence, allowing consistency and availability to be highly probable.

In Git, network partitions are the default state. Repositories communicate only when 
the user prompts for a fetch or push. There is no active synchronization when one 
repository changes.

This does mean that Git has chosen “available” and “partition tolerant” as its two 
modes with the CAP Theorem, which is a strength!



Repository Synchronization
Fetching new objects

The following process outlines the behavior between a git client and a git server 
during a “git fetch” command.



Repository Synchronization
Fetching new objects

First, the client asks the server for the ref advertisement, which is a list of references 
and their current object IDs from the server’s perspective.

The client takes this information and decides which references are important as well 
as which object IDs are not present on the local machine. The rest of the 
communication is done via object ID, in case the remote server changes ref positions.



Repository Synchronization
Fetching new objects

The client then sends a list of object IDs, each of which is marked as a “have” or a 
“want”.

The “want” IDs are objects that are not in the client repository, but are referenced by 
requested refs.

The “have” IDs are objects that are in the client repository, and the client guesses are 
on the server repository, based on previous records of the server’s references.



Repository Synchronization
Server-side “Counting Objects” phase

At this point, let’s take a look inside what the server is doing.

Here is an example object graph, including commits, trees, and blobs.



Repository Synchronization
Server-side “Counting Objects” phase

Suppose the client sends one have and one want. It wants the commit A and has the 
commit B.



Repository Synchronization
Server-side “Counting Objects” phase

The server infers that the client has everything reachable from the haves, giving this 
region of objects.



Repository Synchronization
Server-side “Counting Objects” phase

The server then determines which objects are reachable from the wants but _not_ 
reachable from the haves. These are the objects that the client needs.



Repository Synchronization
Fetching new objects

Back to the server/client interaction, the client may send a small number of haves and 
wants, but desires a possibly large set of objects.



Repository Synchronization
Fetching new objects

The result is that the server sends a packfile filled with object data. This pack contains 
the objects from that object graph walk: objects reachable from wants but not 
reachable from haves.

This process allowed these two repositories to find a set of objects that the client 
needed without each side listing their full contents. This synchronization is specialized 
to use the object graph in creative ways.



Repository Synchronization
Fetching new objects

In addition to only providing the newer objects, the packfile sent over the network can 
also use delta compression.

These deltas can use offset deltas that point within the pack-file, but also “reference 
deltas” can point to a base object ID that is expected to be present on the client 
machine based on the list of “have” objects. This allows even further compression 
during synchronization.



Previously on Git Merge…

Git at GitHub Scale
Taylor Blau

This operation of constructing a thin packfile based on a list of haves and wants, 
should be familiar from Taylor’s presentation earlier this afternoon.

Taylor talked about how Git servers need to organize their packed object data as well 
as use custom query indexes like reachability bitmaps in order to quickly serve 
fetches and clones.



What can I do about this?

You might be thinking: “It’s nice that Git has my back and is doing smart things under 
the hood, but what can I do about this?”

You are in control of your repository.

You determine its shape.

You can influence the norms of your organization.



Run git maintenance start
Fetches in the background

Repacks incrementally

Quick Git Tips

Use good repository hygiene
No large binaries

Don’t commit build outputs

I have two quick tips to share with you before going into some bigger picture items.

The first is that you should run “git maintenance start” in your favorite repositories. 
This will start fetching from your remotes on an hourly basis, reducing the time spent 
synchronizing in your foreground “git fetch” operations. It also repacks your object 
store incrementally on a nightly basis to keep things running smoothly and reducing 
the disk space required for your repository.

The second is that you should practice good repository hygiene. You want to take 
advantage of Git’s delta compression whenever possible. The good news is that files 
that do not delta compress well also do not tend to diff well or merge well, so they do 
not present as useful changes in your pull requests. To fix this, you should remove 
large binaries from your repositories, especially those that change often. Also, you 
should avoid committing files that are created by your build process. Only store build 
inputs in your repository, not outputs.

The remaining ideas I have to share are about macro-scale repository organization. 
They come from the concepts of sharding databases when application databases 
grow larger than what a single node can support.



Un-Sharded Repository
Monorepo

Before talking about sharding strategies, I should first mention that the lack of 
sharding is the basis of the monorepo organization.

Monorepos are a great idea, if you’re careful and using good repo hygiene. As your 
repository grows, it becomes more important to use the advanced Git features that 
allow focusing on a small subset of the repository, like partial clone and 
sparse-checkout.

I’ve talked about monorepo scale a lot in the past, and it’s been covered quite a bit 
today, so let’s focus instead on these sharding strategies.



Vertically-Sharded Repository
Independent multi-repo

The first idea is vertical sharding, also known as functional sharding.

In Git, this corresponds to multiple independent repos.



Repository Sharding
Multi-Repo

This is typically done in a microservice architecture, where each service has complete 
control over its own application database layer.

In this world, the databases are sharded vertically by functionality, and the services 
are built, tested, and deployed from independent repositories.

This organization optimizes for small repositories and low bureaucratic overhead to 
rapidly deploy each service.

The problem comes in when there is no coordination between the repositories and 
services that group together to a larger whole. This can be particularly frustrating 
when trying to work across service boundaries because it is hard to find the service 
you need without some human overhead.



Horizontally-Sharded Repository
Super-repo split into submodules

This brings us to our next sharding strategy: horizontally-sharded repositories using 
submodules.



Repository Sharding
Submodules

A horizontally sharded database takes the same kind of data and spreads it across 
multiple database nodes, using a shard coordinator to help queries run on the proper 
shard nodes.

WIth submodules, a superproject repo has “git links” to the commit histories of 
multiple submodule repos. Those repos can move ahead independently, but 
eventually the superproject dictates which version each submodule is in when 
considered part of the whole. Each submodule is identified in the super project by a 
path prefix, which is the shard key.

This solves the coordination problem in that every submodule has a concrete link fron 
the super-project, so there is a clear way to find the necessary pieces of the larger 
whole.



Previously on Git Merge…

An Improved Workflow for Submodules
Emily Shaffer

But don’t take my word for it. Emily talked earlier about submodules, and if you have 
any questions, I will direct you to her as the expert in the space.

One thing I can say is that if you didn’t start with submodules, then it can be a lot of 
work to split sections of your repository into distinct pieces.

The next sharding strategy doesn’t require any changes to your worktree organization 
at the tip of your repository.



Repository Sharding
Time-based Shards

Time-based shards are inspired by time-series databases.

This presents a way to shard a monorepo without needing to restructure your working 
tree. It’s particularly useful if you’ve gone through your monorepo and cleaned up the 
large binaries and removed the build output so you are practicing good hygiene, but 
want to rid yourself of the previous data shape in your repository.



Repository Sharding
Time-based Shards

So suppose we have a large repository with a significant commit history, but let’s 
focus on a single tip of the history.



Repository Sharding
Time-based Shards

We can archive the old repository and create a new one with a root commit whose 
root tree matches the root tree of the previous tip.

The objects in this commit may be large, but will be significantly smaller than the full 
object graph.



Repository Sharding
Time-based Shards

Now, new work can continue on that root commit, moving the new repository forward.

This process requires a lot of coordination to complete the migration. There is no 
“magic button” that does this for you (at least not right now).

The problem here is that the root commit looks like it added all of the objects in the 
repository all at once. The helpful commit messages from the previous history are no 
longer available to developers trying to solve issues in the new repository.



Repository Sharding
Time-based Shards

Git can help with this, by allowing a way to link the two repositories together using 
“replace objects”. By marking the root commit as replaced by the previous tip, Git 
commands can pass into the old history seamlessly.

This is not a very efficient setup, so it is recommended that archived repository is 
available via a Git alternate and the replace objects are present only when needing to 
look into the old history. As work moves forward in the new repository, the need for 
such history queries slowly diminishes, but is always available if necessary.



Data Offloading
Prioritizing “important” objects

Finally, another organizational concept from application databases may be useful for 
Git, but is not exactly a sharding strategy: data offloading.

The basic concept is to take data that is accessed infrequently and offload it to 
cheaper storage.



Data Offloading

Let’s think about this object graph.



Data Offloading

The commits are very small and easy to store, and they are really important to many 
Git commands.
Their root trees are typically also easy to store with delta compression, so all commits 
and root trees should be considered as  critical data.



Data Offloading

The objects reachable from the root trees of recent commits should also be 
considered important.



Data Offloading

AS we go back in time, we can reduce the depth of objects that matter, since we are 
less likely to go deep into a given path the older the commit.

This creates a way to label objects as “new” or “old” such that we could keep only the 
new objects on local disk while having the rest of the objects available in an alternate 
over a read-only network share.

As far as I know, there isn’t currently a tool that does this automatically. If you’re 
looking for a fun project, then this might be an interesting thing to investigate!



Vertical Sharding
(Multi-Repo)

Horizontal Sharding
(Submodules)

Time-Based Sharding Data Offloading

Scaling Repositories

This concludes my interpretation of common database scaling solutions and how they 
could apply to Git repositories.

Perhaps you have more ideas, and I’d love to hear them.



What can Git learn from other databases?

So this whole time, I’ve been comparing some critical Git operations as parallels to 
application databases, and this time focusing on how Git already has some database 
features.

But, there are so many databases out there and so many more database developers 
than Git contributors, that there must be some ideas from the world of databases that 
we have not yet applied to Git. What can Git learn from other databases?

For today, I only want to mention two ideas.



Database Concepts for Git
“Blessed” Sharding Strategies

Git supports submodules as its only officially-supported form of sharding (other than 
independent multi-repos). Should Git support these other forms more directly?

Alternatively, there is room for third-party tools to create time-based shards or do data 
offloading without needing to modify the Git client at all. Could be an interesting 
direction to pursue.



Database Concepts for Git
Dynamic Data Stores

As we discussed earlier today, Git uses the packfile format both for communicating 
over the network and  for storing data on-disk.

These pack-files are not mutable after they are written. To repack the object data, Git 
writes a new packfile and then deletes the old ones. This “rewrite the world” strategy 
has a difficult time when repositories become very large.

It would be interesting to adapt some database file structures that are built for 
live-updating and pair them with the delta-compression that exists in pack-files. The 
important property to keep is that there is low overhead in constructing a pack-file to 
send over the network while also having maintenance time use resources on the 
order of the new information to the repository, not the total size of the repository.

This is something I’m particularly interested in and hope to build something soon to 
share with the community.



Even though my time is limited here on stage, I do want to mention that I wrote a 
five-part blog series on the GitHub Engineering blog that goes super-deep on all of 
these concepts. Hopefully, this talk inspires you to dive deeper into these ideas, or to 
use them as reference in the future.



Git is the distributed 
database at the core of 
your engineering system.

And if you remember nothing else of what I’ve said, let me repeat the core concept 
that you will take home with you:

Git is the distributed database at the core of your engineering system!

Thank you!


